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O. Introduction

As 1is well known, the theory of linear inequalities
is closely related to the study of convex polytopes. If
the bounded subset P of Bd has nonempty interior and
is determined by i 1linear inequalities im d variables,
then P is a d-dimensional convex polytope (here called
a d—golxtoge) which may have as many as i faces of di-
mension d-l, and the vertices of this polytope are exactly
the basic solutions of the system of inequalities. Thus
to obtain an upper estimate of the size of the computation
problem which must be faced in solving a system of linear
inequalities, it suffices to find an upper bound for the
number fo(P) of vertices of a d-polytope P which has
a given number fd~l(P) of (d-1)-faces. A weak bound
of this sort was found by Saaty [14], and several authors
have posed the problem of finding a sharp estimate. Dantzig
[3] mentions the closely related problem (arising naturally
in connection with the simplex method for linear programming)
of determining those convex sets which have the maximum
number of extreme points, among all sets which are deter-
mined by a system of m linear equations in n nonnegative

variables,




Our main concern here is with the.conjectured in-

equality
£ _Jasa r _<d+’
&1 W 27 d-1i "N 27
(1) fo < +
B = d fa-1 - @

and its dual equivalent

P <d+l> 6 = <d+2
. o 2 0 2
(1*) fa < +
-] = ’
£,- a £,- d

where (k) denotes the greatest integer < k and fS
denotes the number of s-faces of a d-polytope. The valid-
ity of these inequalities for all d-polytopes was conjectured
by Jacobs and Schell [10] and by Gale [8,9], who observed
that the proposed upper bound in (1*) is attained by the
neighborly d-polytopes (studied by Briickner [1], Carath&odory
(21, Gule~(7,83 and Motzkin [13]) having the remarkable
property that for all m < <d/2) , each m vertices deter-
mine an (m-l)-face. Dually, equality in (1) is attained
for d-polytopes such that for all m < (d/Z), each
m(d-1)-faces intersect in a (d-m)-face.

The assertions (1) and (1*) are trivial for d < 2,
where equality always holds., Tor d = 3 they become
f,o<2f, -4 and f, < 2f - 4, facts known to buler [(5].

2
Saaty's bound [14] was sharp for d < 4. The inequalities
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(1) and (1*) were established by Fieldhouse [6]1 for
all d < 6, and by Gale [9] for arbitrary d when

f =d+2 or 4+ 3. Thus Gale shows that (1)

d-1
holds whenever fd-l is small enough. We show here
that it holds whenever fd—l is large enough, specifi-
cally when fd—l > (d/2)2 - 1. This covers the case
d < 6 and thus includes the result of Fieldhouse, but
it does not include Gale's theorem when d > 6 and does
not fully settle the conjecture.

Under the restriction £, 2 (d/2)2 - 1, the inequality
(1*) is established not only for d-polytopes, but also for

an arbitrary Bulerian (d-1)-manifold of Euler character-

istic 1 - (-1)d, where an Eulerian n-manifold (as

introduced in [12]) is a finite simplicial n-complex M"
such that for each s-simplex o e Mn, the linked complex
L( o®,M") has the same Puler characteristic 1 - (=1)s
as an (n;s—l)—sphere. The principal tool is a formula
from [12], applying to all kulerian (d-1)-manifolds,
which expresses f4_, linearly ;n terms of

f(d/2)— 19 f(d/2> I TERRR fl, fo’ and the EFuler charac-
teristic X, . With the aid of similar formalae for
fd—2"°"f(d/2)’ we are able to show that whenever fo
is sufficiently large, then among all of the d-polytopes
(or Fulerian (d-1)-manifolds with X=1- (—d)d) which

have fO vertices, the neighborly d-polytopes maximize




not only fd-l but also all of the other functions

£,(1 < s <d-2). The results for Eulerian manifolds
appear in §l below, and they apply directly to d-poly-
topes which are (d-1)-simplicial. A construction in

§2 reduces the problem for general d-polytopes to those
which are (d-1)-simplicial., It is also proved there that
if a d-polytope P is not a d-simplex, then

d+1

Sl Al R (d;l) for 0 < s < d-1, where the lower

fmy, 2

bound is sharp. §5 discusses the inequalities (1) and

(1*) for general d-polytopes, and §4 is devoted to Dantzig's
problem, §4 also contains a characterization of those

convex polyhedra (not necessarily bounded) which are af-
finely equivalent to the intersection of some flat with

Qn, the positive orthant in Bn.




l. Fulerian manifolds

Let 5 denote the class of all finite simplicial
complexes. For K e X and m > 0, 1let sm(K) denote
the m-skeleton of K; that is, sm(K) is the set of
all simplices @ € K for which s < m. (Note that
sm(K) = K iff dim X < m, so dim sm(K) =m iff

dim K > m.) For each subclass J of K we define

s,(3) .= fs_(N:7 e g},

Jv o= iJ e J:J has exactly v Vertices},

and Jlm] .={J > g:sm(J) is a complete m-complex}.
Thus J € Jlm) if and only if J e J, J has at least
m + 1 vertices, and each m + 1 vertices of J deter-
mine an m-simplex of J.

Now suppose J © K and Q is a real-valued function
on J. The function ¢ will be called m-invariant! pro-
vided Q(J) = 9(J') whénever J and J' are members of
J such that f_(J) = £(J') for all s < m. We shall
say that ¢ 1is proper for (J,m,v) provided ¢ is
m-invariant, J_(m) £@, and sup I, = (I, ml)y if
PI) <9I, m]) for all J e Jy ~ 3, ,ml, then ¢ is

said to be strictly proper for (g,m,v).

£ <m, and ¥

£i \'2 is proper

1.1 PROPO3ITION GSuppose J < K, O

-~ ~

oA

and ¢ are real-valued functions on J.
o = "~




for (g,(,v) and ¢ is proper resp. strictly proper

for (g,m,v), then v+ e is proper resp. strictly

proper for (J,m,v).

Proof. Let J_ e J [m] < J, L], Then
sup(y + Q)(gv) < supy (g, ) + sup (I, =
=¥ (I) +QUI) = (¥+@)J) < sup(y+ 9)(JI).

Thus 4 + @ is proper for (J,m,v). If ¢ is strictly
proper and J € gv” «J-v[m]’ then @ (J) < cp(Jo) and con-
sequantly (¥+¢)(J) < (y+ )(3).11

Now let A denote thz set of all eventually zero
segquences o = (ao,al,...) of real numbers. For o € A

and K € K 1let
o

[0 o]
a(K) .= Z’s:O o« £ _(K),

where. fS{K) is the number of s-simplices of K. It is
clear that if X, = 0 for all s > m, then the function
® 1s m-invariant on K.

We shall denote by n(r) the falling factorial

(k)

n(n-1)...(n-r+1) and by the rising factorial

n(n+l)...(n+r-1), with the convention that n(o) =1 = n(o)

1.2 THEOREM suppose o € A with o = O whenever

S

s >m and whenever s < m - k. Then the function is

proper for (ﬁ,m,v) 34




(4) T gD gy (=)™ 20 (0 53 < W

and is strictly proper when the conditions (aj)

(0 < J < k) are valid with strict inequality.

Proof. Suppose K & [ =~ and K, € Evfm]. Each
s—-simplex QJ; of ¥ is determined in s + 1 differ-
ent wiys by specification of one of the (s-1)-faces
(having s vertices) of a° together with the remaining
vertex of @° (which is one of v-s vertices of K).

Thus

(bs) (s+1)fS(K) < (v—s)fs_l(K).

Writing fs for fs(K), we obtain the following in-
equalities, whose justification ig indicated in parentheses

to the risht:

(bm) ) (m+1)fm < (v—m)fm_l

(1) (m+l)(am—lfm—l~+ amfm) < fm_l[am_l(m+l) + am(v—m)] (ao,bm)

(b 1) mf < (v—m+l)fm_2

m- m-1

(2) (m+l)m(am_2fm_2 + am—lfm—l + amfm) < (l,al,bm_l)

< £ olo S(mel)m + a _q(m+l)(v-m+l) + am(v-m)(v_m+1)]




(k) (m+l)(k)(am—kfm—k * oLm—k+lfm—k+l +"'+am—lfm—l E omem) £

<f [Zk (mel), o (v=s)E=8)g . (i1 i
<k s:Oam“s m+ (5) v-5) ; -1,a

LY

v
But of course fm—k < (m—k+1J, and in conjunction with

the inequalities (k) and (ak) this implies that

k

(k*) (k) < [(m+1)®]—l (m";if']) Z )(k—s) _

am_s(m+l)(s)(v—m

v

= Z qm_s<m—5fl) = OL(KO),

5=0
whence o 1is proper for (Enm,v).
Suppose, finally, that all of the inequalities

(aJ) (0 £ j € k) are strict and that a(K) = a(KO).
3ince the inequality in (k*) is strict unless

v
£k © (m—k+l), we conclude that K € K [m-k]. An

inequality ((k-1)*) (which is related to the inequality
(k=1) as (k*) is to (k)) then shows thut K € K, [m-k+17,
and continuing the process we conclude after a number of

steps 1t K € 5v[m].||

1.3 COROLLARY Suppose o = (ao,...,am,o,...) E A

(that_is, ag = 0 for all s >m). If o > O pthen the

function a is strictly proper for (Eﬂm,v) whenever v

is sufficiently large.

Proof., Note that condition (aj) in 1.2 is equivalent

to an inequality of the form



ava g pj(v) > 0,

where ‘pj is a polynomial of degree Jj-1 whose co-

efficients are determined by the values of ao,al,...,am.ll

1.4 COROLLARY 3uppose o« = (O,...,O,am_l,am,o,...) € A.

If the numbers o and am*l(m+l) + o _(v-m) are both

m
>0 (resg. > O) s then the function o 1is proper

<resp. strictly proper) for (K,m,v).

Proof. This is merely the case k =1 of 1.2.||

For each positive integer n, let jﬁn denote the
class of all kulerian n-manifolds (as defined in the Intro-
duction and in [12]). When n is odd and M sgn, the
ituler characteristic I(H) is necessarily equal to O
(3.2 of [12]). When n is even and ¢ 1is an integer,
E 9C 4111 denote the class of all Sulerian n-manifolds

M for which Y(M) = c. We recall from 3.2 of [12] the

fact that if Hz:Efl with n = 2u-1 or n = 2u-2, then

. u-1 S n-j-1
5 x _yu-1-j +1 ( )
(for n = 2u-1) £ (1) Zj=o (-1) e aa U ENCOP
and

(for n

it
it

=7 : ~Jj=1
DY) xan +’Z§=;<-l>“‘a2(nuil )50

2u-2) £ (M) o

A d-polytope T will be called m-neighborly provided
each m vertices of P determine an (m-1)-face of P.

Gale [7,8] has proved that for d/2 <m < d + 1, the only




m-neipghborly d-polytopes are the d-simplices, while for
m < d/2 there exist m-neighborly d—poiytopes having any
specified number of vertices > d + 1. Such polytopes

must be (d-1l)-simplicial when m = 4/2 (Gale [7]), but
for m < d/2 there exist m-neighborly d-polytopes which
are (d-l)-simplicial und also those which are not (d-1)-
simplicial (both having any number of vertices > d + 1).

As the term will be used here, a neighborly d-polytope is

one which is (d-1)-simplicial and (d/2) -neighborly. If
K 1is the complex formed by ull of the proper faces of
such a polytope, then of course K slﬁﬂxd-2)/gﬂ; that
is, K 1is a sinplicial complex whose_««dr2)/2) ~-skeleton
is a complete complex. By 3.3 of [12], K 4is an Eulerian
(d-1)-manifold, so we conclude that

2u-1

2u + 1, the class E, [u-1) is nonempty
v

2u-2,2
2u, the class E [u-2] 4is nonempty.
v

for v

v

for v

v

1.5 THEOREM Suppose n =2u -1 and v >n + 2.

Then the functions fn’fn—l""’fu+1 and f  are (u-1)-

invariant on E n’ and for v sufficiently large they are
SANERSONE 28 2 and 1or

strictly proper for (E™ u-1,v). 1In particular, if
~ k] Y = -

v > u2—1 then

n n v Y=L
sup £,(ED) = (ED 1)) =% (),
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while for v > ua - 1 the maximum of f o) E 3 is
"~

n ——— ——

attained only on E Efu-l].

Proof. TFor the (u-l)-invariance of the functions

foaeensf on En, it suffices to note that on En each

u
of these functions is a linear combination of the functions

f £, (by 2.4 of [12]). 1In fact, for 0 < i < u-l

-1t %,
the function fn—i is seen to have the form

u u-2
.. n
4 = (i) L1 * Z g a(n,l,J)fj (on ED.

Since by 1.3 the function

u
(a(n,i,0) »yo(ngigl), ...,oc(n,i,u—2),(.) »0,...) (g4)
1

is strictly proper for (E,u-l,v) whenever v is suffi-

n
ciently large, and since the class E (u-1] is nonempty,
v

it follows that f is strictly proper for (E}ﬂurl,v)

n-i
whenever v is sufficiently large.

. v-uy
Since ;%E ( u ) is exactly the number of n-faces

of a neighborly (ﬁ+l)—polytope which has v vertices
(Gale [8]), we may complete the proof of 1.5 by showing
that the function fn is proper for (ELn,u—l,v) when
v > u2 - 1 and strictly proper when v > u2 -1, To
this end we employ the formula for fn stated above, re-
presenting fn as a linear combination of fu-l and
fu-2’ plus a linear combinution of fu-} and fu-#’

plus -«+., For example,
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fl5 = (f6—6fs) + (20f4—48f5) + (9Of2—152fl) + 152f0

when n = 13, In view of 1.1 and 1.4 we may rcach the de-

sired conclusion by verifying that if aj o= @(n,0,j)s; then
-aj_l(j + 1) + aj(v - J) >0 for j = u-l,u-3,...,

with strict inecquality when we want strict propriety. This

is equivalent to the requirement
(3] IaJ._l/onJ.I < (v=3)/(3+1).

‘The requirement [j] is satisfied when Jj = u-1l, for the
left side of the inequality [u-1] is equal to wu-1 and

g _ 1)

the inecjuality is equivelent to the condition (v > u
which forms part of our hypotheses. Now as J decreases
through the values wu-1, u-Z2,..., the right side of [j]
actually increases, so to complete the proof of 1.5 it
suffices.to show that during this same decrease in J, the

left side of the inequulity [j] decreases in value. This

amounts to the requirement that

jo,

l_l/ail & Iai/ai+l| (1 <1< u-2)

or equivalently that

NP 2u-i-1\{2u-i->3 . 2 (2u-i-2
i(i+2) -1 )( Ul ) < (i+1) = 1 ) J
This is equivalent to the assertion that

1(142) (1-2usl) (i-usl) < (141)2(i-u)(i-2u-2),




which on substituting x-1 for i reduces to
ux2 - Jux + 2u2 > 0.

The discriminant of the quadratic form is u2(9-8u),

which is negative when wu > 2. This establishes the pro-
priety of fn except when u = 1, und that case is trivial;
further, the strict propriety of fn is assured when

v > u2 - 1."

1.6 THEOREM. Suppose n =2u -2, v>n+ 2, and

the integer ¢ is given. Then the functions ¢

n,
fn-l""’fu and fu—l are (u-2)-invariant on E n,c,
and for v sufficiently large they are strictly proper
for (‘g n,2’ u-2, v). In particular, if v > wl - 2
then '
n,2 n,e2 v-u
sup £ (E " )-f (B w-2)-2( ),
~ v ~ v u-1
2 n,2
while for v > u” - 2 the maximum of f, on E is
~
- n,2
attained only on E {u-21.
v

Proof. (This is a paraphrase of the proof of 1.5.)

. . E n
By 2.4 of [12], each of the functions foveeerf,; on E

is a linear combination of the functions fu~2""’fo and

X (where X is the iuler characteristic). Since the value
. . n,c .
of X is fixed (=c) on E %, the functions foaeeent

must be (u-2)-invariant on E ™S, Now for 0 <i<u-1,

u-1l

the linear expression of fn_. in terms of fu_é,...,f

1 o




and X dinvolves fi-p With a positive coefficient, and

since the class E n,2 [(u-2) 1is nonempty it follows that
v

f is strictly proper for (Q'n’a,u—2,v) whenever v

n-i
is sufficiently large.

For n = 2u-2 and v > n + 2, the type of con-
struction and reasoning which were employed by Gale [8]
for odd n 1lexzd bo neighborly (n+l)-polytopes having v
vertices and 2(X:E) n-faces. The proof of 1.6 is com-
pleted by showing that if aj = (-1)"792(*-37Y) (the
coefficient of fj in the expression for fn), then
for v > u® - 2 and j = u-2, u—5,...,laj_l/ajl < (v=3)r(3+1).

Verification of this is quite analogous to that in l.5.||
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2. DPolytopes and pyramids

Recall that a convex polytope P in BF is the

convex hull of a finite set or (equivalently) is a bounded
set which is the intersection of a finite number of
closed halfspaces. A face of P is either P itself,
the intersection of P with a supporting hyperplane, or
the empty set @. A prover face is one other than P
or @.

The following is well-known and easily proved.

2.1 PROPOSITION sSuppose X is the set of all ver-

tices of a convex polytope P = con ¥y, and Y is a proper

subset of X. Then the rolloving three statements are e-

quivalent:

(i) Y is the set of all vertices of some face of P;

(i) aff Y N con (X~ Y) = @;

(iii) X admits a supporting hyperplane H feor
" which X N H =Y.
(Here con indicates the convex hull and aff indicates the
affine hull (smallest containing flat)).

A d-polytope I will be called pyramidal at q pro-
vided I is the Jjoin of q and u (d-1)-polytope; an
equivalent requirement is that the vertex q of P should
not be an affine combination of the remaining vertices of

P.
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2.2 PROPOSITION Suppose q is a vertex of a face

F of a polytope P. If P is pyramidal at q then so

is F.

2.2 PROPOSITION A d-simplex is pyramidal at each

of its d + 1 wvertic~s. If a d-polytope is pyramidal at

d -1 or more of its vertices, then it is a d-simplex.

For each d > 2 there exists a d-polytcpe Pd which is
pyramidal at exactly d - 2 of its vertices.
Proofs. ‘e prove only the second and third asser-

tions of 2.5, leaving the rest to the reader. Clearly
the first assertion is true if d < 2. Suppose it is
known for d = k =1 >2 and consider a k-polytope P
which is pyramidul at k - 1 or more of its vertices.
Let g Dbe such a vertex and let 9 be the (k-1)-polytope
such that P is the join of q and 9. It follows from
1.2 that 9 1is pyrumidal at k - 2 or more of its ver-
tices and then from the inductive hypothesis that Q 1is
a (k-1)-simplex. Thus the set P(= con (Q U {q} )) is
a k-simplex and the second assertion of 2.3 follows by
mathematical induction.

To construct the polytopes Pd we start by taking
for P2 an arbitrary convex quadrilateral(which clearly

has the desired property), and having defined P we

k-1
and an additional independent
k-1 -

let P be the join of P

k k-1
vertex q. (For example, we may assume that Pk-l < R

Bk;
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then choose q £ R~ Bk—l and let P, .= con (Pk—l ufa3).)

-

For later use, note that the s-faces of Pk are just the

s-faces of P and in addition the joins of q with

k-1
the various (s-1)-faces of Pk—l; hence

PR = P (B 5) & Boup(B ) W

When X 1is the set of all vertices of a d-polytope
con X and q 1is one of these vertices, we will say that

X' 1is obtained from X by pushing q to q' provided

X' = (X~fq}) ufa'} where q' 1is a point of con X such
that the segment J]q,q'] does not intersect any (d-1)-flat
determined by points of X. Clearly such a pushing is al-
ways possible. The following result amplifies a remark of
cale ( §2 of [9]).

2.4 THEOREM jSuppose X 1is the set of all vertices

of a d-polytope con X, and X' is obtained from X by

pushing q to q'. Then q' |is a vertex of the d-polytope

con X', and each proper fuce of con ¥' which includes

Q' 1is pyramidal at q'. For all s < d-1,

£ (con X*) > £ (con X) + g (a,%X) + g_ ;(qa,X),

where gr(q,x) denotes the number of proper r-faces of

con X which include q but_are not pyramidal at q.

If every proper face of con X which includes q is pyra-

midal at q, then fs(con X') = £ (eom X) ZLor all s.
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at q, while if s £ d-2 an additional s-face of con X!
arises from euach (s+l)=face of con X‘ which includes gq
but is not pyramidal at . 3ince there is no duplication
amony these contributions, the inequality stated in 2.4 is
implied by the conjunction of (a), (b), and (c).

If Y is as in (a) and H is a supporting hyper-
pPlane of con ¥ such that X N H = Y, then X' nNH-=Y
and consequently con Y is an r-face of con X', This
proves (a),

How with X < Bd, suppose Y 1is as in (b) and let

Z .= Y~fql. UJe want to show that

aff(z u iqM}) N a=g¢, where A .= con(X~Y).
Suppose the contrary. Then we have

aq' + Zz‘ezazz - Zch~YBxx € con X, with

o +.25zczgz = l’:E:xsvaBx = 1, always By > 0.

3ince q' is ipterior to con X while con 7 is‘an
(r-1)-face of con X, it follows that o, > 0. Now
we assume without loss of generality that 0 € aff 7
and let § denote a linear transformation of gd onto
Bd'r+l such that the kernel ¥71(0) of ¥ is equal to

aff Z. Then of course

§(aff ¥) = REa) and §(afe(z U §9) = REqQ').




3ince Y is the set of all vertices of a fzce of con X

we have
(aff Y) 0 a =% and REq) N $a = B,

where the second statement follows from the [irst be-

cause aff Y = i—l(R(Sp)). Thus the polytope ¥A in
Rd-rfl

-

is not intersected by the line R(§q) but (re-
calling that o, > 0) it is intersected by the ray
J0,0[(¥§q'). Consequently the segment Jlq,q'] includes
a point w such that the ray JO,00[(¥w) intersects a
(d-r-1)-fuce of ¥ 4. There must be d-r vertices

Voseesa Vi iy of tnis fuce whoue affine hull is a

?d—r+1,

(d-r-1)~flat in R und then with u; € E-l(vj) n x

d-r-1 .
5 & of X

it can be verified that the subset Z U iu
determines a  (d-1)-flat in R® which includes the point
w of Jp,p'l. This contradicts the definition of pushing
and complcetes the proof of (b).

ilow (preparing for (c)) with X « Bd, let us denote
by C the union of all rays which cmanate from q' and
pass throush the various points of con(X ~%q}); C is
a polyhedral c¢onvex cone with vertex q' and C is point-
ed (contains no line). We claim that con X' = C N con X,
where inclusion in one direction is obvious. To estab-

lish the reverse inclusion we must show that if p € con X ~

con X', then p ¢ C. ‘'/hen p & con X' we know that p

is sevarated from con X' by a (d-1)-flat H deﬁermined by




points of X', and since p £ con X this flat must pass
between p and p', Tn view of tho definition of push-
ing, this implies that ' £ Y, whence I isg ¢ supporbing
aypervplune of C and p & C. e conclude that
con X' = C N con X, Mrom this it follows that every face
F of con X' which includes Q' 1is contained in a face
of C, and hence all of the other vertices of F must
lie in the set (X ~fg)) n vary c.

How suppose, finally, that Y is as in (e)y what is,
Y is the set of all vertices of an r-face con Y of
con X (with r <d-l), and q €Y but con Y is not
pyramidal at q. Then with 2% .= Y~1{q), it is clear that
aff 72 = aff Y and (by 2.1) con 2 is an r-face of con X',
This is the first assertion of (c¢). With the cone C as
above and B .= bdry €, the set B is the union of a
finite number of (d-1)-dimensional polyhedral cones, each
having q' as its vertex. 3ince con 7 c C and
PEeYN (@ff 2)~C), the polytope con Y cuts across B
and the intersection BNecon¥ (=B Ncon2) is the union
of a finite number (> 1) of (r-1)-faces of con Z. It can
be verified that cach of these fuces [ is an (r-1)-face
of con X' and that con (F U $q'}) is an r-face of con X',
This establishes (c) and hence completes the proof of 2.4
except for the statement about equality of fs(con X) and
fs(con X'). That statement follows from (a), (b), and (c)
in conjunction with the fact that each proper face of con X!

that includes q' is pyramidal at (o[LF "




A polytope will be called s-simplicial provided all
of its s-faces are simplices.
2.5 COROLLARY lor v >d + 1 and 2 § s £ d,= 1,

let M(d,v,s) denote the class of all d-polytopes which

have v vertices and which, among all d-polytopes wilh

v vertices, have the maximum number of s-faces. Then

ﬂﬁd,v,s) includes d-polybtopes which are (d-1)-simplicial.

All of the members of M(d,v,s) are s-simplicial and

(for s < d - 2)(s + 1)-simnlicial. If d=s5s+1,4d =5 4

ord = 2(s + 1), then all of the members of ﬁ(d,v,s)
are (d-1)-simplicial.

Proof. Suppose 3 ¢ Efd,v,s) and let Ayseeerq,
be the vertices of Q. Let X, = iqi:l <ikL u}, and
for 1 < i< v let the set X; be obtained from X
by pushing a3 to a new position qi. TLet
B 5= coniqi:l i< v}. From 2.4 it follows that every
proper face of P is pyramidal at each of its vertices,
and then from 2.3 that P is (d-1)-simplicial. The
inequality in 2.4 implies that fS(P) & fS(Q) (whence
P e Qﬁd,v,s)), with sfrict inequality if some s-face
(or, when s < d - 2, some (s + 1)-face) of @ fails
to be a simplex and hence is nonpyramidal at some vertex.
But of course strict inequality is impossible, so all of
the desired conclusions follow except for the special
case d = 2(s + 1). That case is covered by Gale's obser-
vation [8] that " the faces of a neighborly polytope are

simplexes'. ||




There is an open problem connected with 2.5. For
each d > 3 1let M(d) denote the set of all integers
s € [1,d-1] such that for each v > d + 1, all of
the members of ﬂ(d,v,s) are (d-1)-simplicial. From
2.5 it follows that {d—l, d—2} < M(d), and also
(d-2)/2 € M(d) when d is even. By considering pyra-
mids based on neighborly polytopes, it can be verified
that s ¢ M(d) when s < (d-3)/2. '"he problem is to
determine T11(d) for all d. HNote that M(3) = {1,23 s
ey = §1,2,3,

3,4 e sy e 2,5, ana {2,4,5) < m(e) < §2,3,4,53,

but we do not know whether 2 € H(S5) or 3 e M(6).

It may be generally known that each d-polytope has
at least as many s-faces as has a d-simplex (cf., Saaty
(14, p. 327]) but we have not found a proof in the liter-
ature. Accordingly, it seems worthwhile to establish

the following stronger result,

2.6 THEOREM For all d and s, each d-simplex

has exactly (g:i) s-faces, For all s and for each

d-polytope P which is not a d-simplex,

to(r) 2 (511) + {59 5

further, there is s d-polytope Py having

e - (31) ¢ (5 rran s,
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Proof. The first assertion is obvious, for a d-simplex
has (d + 1) vertices and each s + 1 of these determine

an s-face. Now for all d and s, let

$(d,s) .= (g:i + (d;{) 5 and note that

g(dss) = g(d = I, S) + S(d = 13 s - 1).

The polytopes P are constructed as in 2,%; that they

d
have the stated property follows from the above recursion
for E(d,s) in conjunction with the equation terminating
the proof of 2.5%.

WJe want to show that if d >2 and P is a d-poly-
tope which is not a d-simplex, then fS(P) > }(d,s) for
all s. This is evident in the two-dimensional case,
where $(2,0) = $(2,1) = 4. Suppose it is known up through
the (d-l)-dimensional case, and consider a d-polytope
P as deuscribed. Jince P 1is not a simplex, 2.3 implies
that P 1s nonpyramidal at some vertex p. TLet F Dbe
a (d-1)-face of P which misses p and let q be a
vertex of P which is'not in F U ip} . Such a q
exists by nonpyramidality. Let G be a (d-l)-face of
P which includes q but not p. Let H be the inter-
section with P of a (d-l1)-hyperplane which strictly
separates p from the remaining vertices of P, and let
K be the intersection with G of a (d-1)-hyperplane

which (relative to the (d-1)-flat aff G) strictly




>

separates q from the remaining vertices of G. The
(d-1)-polytopes F and G and the (d-2)-polytope X
may all be simplices, bul in any case the inductive

hypothesis implies that

Tal(F) ¥ 2, g(B) + ot 53 ) » 02) » (LY

(d+1 5 (d;%) = f(d,s).

s+l
Since the numbers fS(F), fs_l(n), and fs_l(K) are
respectively the numbers of s-faces of P which lie
in F, which include P, and which lie in G while in-

cluding q, it follows that rs(r) > E(d,s).l'
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3. The number of vertices of a convex polytope

Here the results of §§1—2 are applied to establish
the conjectured inequality (1) from the Introduction,
under the restriction that fd—l > (d/2)2 = Itz

For 1<s<d-1 and v >d + 1, 1let N(d,v,s)
denote the number of s~faces of a neighborly d-polytope
which has v vertices. (It follows from formulae in
[12] that all such polytopes have the same number of
s-faces. According to Gale [8], this has also been es-
tablished by Fieldhouse (perhaps in [67).)

3.1 THEOREM For each integer d > 2 there is

an integer k(d) which has the following property:

whenever v > k(d) and P is a d-polytone having

v vertices, then fc(P) < H(d,v,s5) for 1 <s <d-1;

if s=d-1, s=d4-2, or P is (d-1)-simplicial
and s > ((d—?)/Z), then f_(P) < H(d,v,s) unless P

[N
€N

neighborly.
Proof. Let k(d) be chosen according to 1.5 and

1.6, so that when d = 2u and v > k(d) the functions

fq_1»+++»f, are strictly proper for (’gd'l,u-l,v),

while when d = 2u - 1 and v > k(d) the functions

a-1.,2

£ £ are strictly oroper for (‘g ,u=2,v).

d_l,..s,
Consider a d-polytope P which has v vertices, with

u-1

v > k(d). If P is (d-1)-simplicial, let Q .= P.
If P is not (d-1)-simplicial, let ¢ be a (d-1)-sim-

plicial d-polytope such that fo(P) = fo(Q), fS(P) < fS(Q)
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for 1 <s<d-1, fd_g(P) < fd—2 (Q) and

fd_l(P) < fd_l(Q). (The existence of such a § is
guaranteed by 2.5.) By 3.3 of [12], the complex
formed by the proper faces of Q is an PBEulerian
(d-1)-manifold. Thus from the choice of k(d) it
follows that fS(Q) < N(d,v,s) and that the inequality
is strict for s > ((d—2)/2> unless Q is neighborly.
This completes the proof. ||

5.2 THEOREM Suppose P is a d-polytope having

v vertices and f (d-l)-faces. If d = 2u, then

v vV-u l y . f f-u
< = ( n ) when v >u” -1 and v < =i ( "
when f£>u® -1, If d=2u-1 fthen f<2 Mg
when v > u® - 2 and v <2 (5:; when f > ul - 2.
Proof. For the inequalities " f < ... ", use

2.5 1in conjunction with 1.5 and 1.6, as was done in
the proof of 3.1, The inequalities " v < ... " then
follow with the aid of the standard polarity theory for
convex polytopes (Weyl L15].||

3.5 COROLLARY At least for d < 6, the inequali-

ties (1) and (1*) of the In'rodiction are satisfied by

all d-polytopes.

1t secms probable that the extra conditions on
v,f and 4 are required in 3.1-3,% merely because our
approach is inadequate. ‘e are interested mainly in those

cell-complexes which arise as the system of all proper




faces of a d-polytope, but have not made Tull usc of

all the structure at our disposul. It was usecd only

to restrict attention to Tulerian (d-1)-manifolds of
Euler characteristic 1 - (—l)d, and then a formula
valid for all such manifolds was used to express fd—l

as a linear combination of f(ﬁ/2)~l’ f(d/2)—2""’ fl
and fo. From that point on, the reasoning applied to
an arbitruary simplicial (d-1)-complex, without using
even the information contuained in 2.6, Presumably, a
fuller use of the available structure would lcad to a
proof of the inequalities (1) and (1*) without additional

restrictions. Thus we conjecture that £_(P) £ m(a,v,s)

whenever 1 < s < d-L and P isg a d-polytope having

v vertices, while (du:lly) fs P} < N(Q,f ;=) whenever

0<s<d-2 and P is a d-polytope having f(d-1)-taces.

— ———

For 2 <d<f -1, let V(f,d) denote the maxi-
mum number of vertices achieved by any d-polytope which
has £ (d-1)-faces. Part of the above conjecture is the
same as the J3G-conjecture (Jacobs and Schell (10], Gale

£ f-u
?:—J(u)':lhen d = 2u

i}

[8,9])——— namely, that V(f,d)

and V(f,d) = 2 (5:‘; when d

2u - 1; this is proved
in 3.2 for u“ -1 < f. Now it is also of interest to
determine the maximum of V(f,d) for other ranges of
values of d (when f is given). Partial results in
this direction can be oblained from 5.2, and the same

line of reasoning leads to the following observation.




5.4 PROPOSITION Suppose the JSG conjecture is

correct, and f 1is an integer > 2. Then for the

—_— —_——

polytopes which have f maximal proper faces, the maxi-

mum possible number of vertices is the larcer of the two

numbers

5 (f—b T <fﬁ'» L2 —JK)f .4)}

t-1

Proof. TFrom the J3G conjecture it follows that if

2(u + 1) < £ -1, then

V(f,2u) (f=u=1)(u+l)
V(T,2Cu+l)) ~ (f—2u)(f:éu_17 ’ whence

(1) v(f,20) < v(£,2(url)) iff u < (SE-4-y(5°-4)/10 .

The JSG conjecture implies also that if 2u + 1 <f -1,
then

V(f,2u-1) (f-u)u

V(f,2u+l) == ~2u+1)(f=2u) Ll

-

(2) V(f,2u-1) < V(f,2url) iff u < (5£e2-Y(50%44)/10 .

Now let s be the largest integer such that 2 < 2s < f-1

and

v(f,2s) = max {v(f,2u):2 < 2u < £-13




and let t be the largest integer such that
2 <26-1 < f-1 and

V(£,26-1) = max §V(F,2u-1): 2 < 2u-1 < -1} .

Then V(f,25-2)

I

V(£,25) > v(f,2s:2)
und from (1) it follows thut

s-1 < (50=-4-(SF“-4) /10 < 5.
whence s = <(5f+6-{(5f2—@)/10 .

Similar reasoning buased on (2) shows that
t = {(50e12-y(5c% )y /10 |

This completes the proof, for the maximum which we seek

is either V(f,2s) or V(f,2t-1) (or both).(This reasoning

assumes that 1 < 2s-2 < 2542 < -1 and

1 < 28-3 < 2t+1 < f-1. ''he assumption fails for a few

small values of f, but these are casily treated directly.)l'
When f < 7, the validity of 3.4 follows from 3.3

(without using the JSG'conjocLure). The first alternative

in 3.4 arises for f ¢ {5,4,6,7}, the second for £ ¢ {2,4,5].




4. The problem of Dantzig

Dantzig's problem (No. ? in [3]) is not immediately

concerned with linear inecualities in real variables, but

rather with m linear equations in n nonnegative variables.
Accordingly, our attention is directed to the positive
orthant gn, consisting of all points of 3“ which have
exclusively nonnegative coordinates. A linear equation
in n real variables determines a hyperplane in B?, and
a system of m 1linear equations determines a flat of di-
mensiorn > n-m; if the system is not redundant, the dimen-
sion of the flat is equal to n - m. Thus Dantzig's problem
may be stated more geometrically as follows: Among the
intersections of Qn with the various k-dimensional flats
in Bn, which ones have the maximum number of vertices
and what is this maximum number?

Up to this point we have discussed only bounded
sets. lHowever, there is no such restriction in Dantzig's
problem, usnd accordingly we define a d-polyhedron to be
a d-dimensional set which is the intersection of a finite
number of closed hulfspaces. As is well known (Weyl [15]),
a set is a d-polytope if and only if it is a bounded d-poly-
hedron,

Considering each finite-dimensional linear space to
be self-dual with respect to an inner product ( ] > y We
shall use without specific reference the standard polarity
theory for convex bodies. The results employed here can
be found in eyl [15] or Klee [11]. Ve require also the

following remark.




4.1 TPROPOSITION Suppose £ and [ are finite-

dimensional lineur spuces, §  is a linear transformation

of & into ¥, and ¥% is the adjoint of § . Then

ct

for cach set X ¢ I it is

rue that

52(F0°% = x° n (3%p).

Proof. Here ¥ 2 is the linear transformation of
F into ¥ which is defined by the condition that
(x, Say> = <§xgy> for all x € E and y € F. To
establish 4.1 it suffices to note that if X e E, ¥ €eF,
and X = 525,  then the following five statements are

% {x,%) €1 for all x € X;

equivalent: X ¢ X
(x, §a§> < 1 Tap all % & % <§x,§> <1 for all x e ¥;
¥ e (3un°.li
In applying 4.1 we will use the fact that the linecar
transformation SEI is nonsinsulur provided S maps
& onto F.
The next theorem extends an observation of Davis (4].
4.2 THEOREM Juppose P is 4 k-polyhedron in Bk,

with O € int I'. ‘Then the followine three statements are

equivalent:

(a) P 1is affinely equivalent to the intersection of

Qn with some k-flat in Bn;

(b) P contains no line and P has at most n(k-1)-faces;

(¢) the polar body P° is a k-polytone in Bk with

at most n wvertices other than the orisin 0 (whish may be

a vertex of P° but is not reguired to be).




Proof. (a) =» (b). Suppose (&) holds. Then there

. . . . k
13 a nonsingular affine transformation E of R onto

Rn

-

such that ¥P = ( Eﬁk) n 8% ror 1 <i<n let n;
be the composition of § with the ith coordinate func-
tion on Bn. Then the k-polyhedron P 1is the intersection
of the n sets ix I Bk:‘ni(x) > 03 (1 <i<n), and
since cach of these sets is either all of Rk or is a
closed halfspace in Bk, it follows that P has at most
n (k-1l)-faces. 3ince Qn contuins no line, the sume is
true of P.

(b) = (c). Suppose (b) holds and O € int P,
whence of course P° is bounded. Since P contains no
line, P° is not contained in a hyperplane in Bk and
consegquently P® is k-dimensional. lwuch vertex of IP°
other than O corresponds to a (k-1)-face of P, so
P° is a k-polytope with at most n vertices other than
0. .

(¢) = (a). Suppose (c) holds and consider the

n-simplex

1

n . .
S .= $x = (x7,..0x™) & R™: lel < 1; x* > 0 for all idc g".

3ince O € Po and P° has at most n vertices other than

. . ; n
0, there exists a linear transformation S of R onto

k

R such that $8 = P°. rrom 4.1 it follows that the set

P 1is affinely equivalent to a k-section of the set




n

s« fxer™x* <1 forall i},

. ' n
and of course 83° is equivalent to g9 . Thus (c)
implies (a) and the proof is complete. N

4.5 COROLLARY If P is a k-polyhedron and j is

an integer > 1, then the following two statements are

equivalent:

(a) P is affinely enuivalent to the intersection of
n C . : n
€ with some (k+j)-flat in R ;

(b) P contnins no line and P has at most n-j-l1

(k-1)~faces.

Proof. (a) = (b). Let G be a (kej)-flat in R°
such that the intersection G N Qn is alfinely equiva-
lent to the k-polyhedron P. Let g[ (an {-dimensional
orthant in g“) be the smallest face of Qn which
contains the set G n @". If £ = n then  intersects

-

the interior of g“ and it is clear that
dim (G N @") = dim G = k + j > k,

an impossibility. Thus { < n-1 and G misses the
interior of Qn. 3ince Qn is polyhedral the supporting
flat G must lie in a supporting hyperplane H of Qn.

By the minimality of {, G includes a point of the relative
interior of Qf, and this imnlies that Q( < H, wvhence
it centains the lincur hull 3( of Qf. It cun Be veri-

fied that




g5

aim( 0 §g¥) - ain(e n el - k.

Since the (k+j)-flat G and the [f-flat ‘B[ both lie
in the (n-1)-fluagt H, we conclude from a well-known

inequality that
(k + §) + £ - x < n-1,

whence [ < n-j-1. 3ince the k-polyhedron p is affinely
equivalent to a k-section of g{, we conclude from 4,z
that condition (b) is satisfied,

(b) = (a). Suppose P is as in (b), whence by 4,2
P is affinely equivalent to the intersection of Qn-j_l

Bn—a—l. Ve may regard Qn-g—l as a

by a k-flat F in
face of Qn and then 3“ contains a hyperplune H such

thuat

0N 9n N En~j—l = ﬁn-J—l.

In the (n-1)-flat U there is u Jj=flat ¥' whose inter-
section with ﬁn—J—l consists of a single point of P,
and then the affine hull G of FUR is a

(J+k)=flat in §" such that G n g = p n g"=9-1,

set affinely equivalent to P, "

The following result is useful for its corollary, which

Justifies a restriction to bounded sets in the problem of
Dantzig.,

4.4 PROPOSITION For positive integer d,m, and n

the following two stutements ware equivalent:




(a) there exists an unbounded d-polyhedron P which

contains no line and which has exactly m (d-1)-faces

and exactly n vertices;

(v) there exist a d-polytope Q and a boundaf& poing

z (not necessarily a vertex) of @ such that @ has

exactly m vertices # z and exactly n (d-1)-faces

disjoint from gz,

Proof. To see that (a) and (b), suppose
O e int P < Bd and consider the polar body Q .= B = Bd.
With 2z .= 0, the desired conclusion follows from the
standard polarity theory. To see that (b) implies (a),
take O = z € bdry Q < Hd and let P .= Q°, Again the
poiarity theory is applicable. ,l .

4.5 COROLLARY SJuppose P is an unbounded d-poly-

hedron which contains no line and has f (d-l)-faces.

Then f >d, and if f >d + 1 there exists a d-poly-

tope which has f (d-1)-faces and has more vertices than

P,

Proof. Recall that P 1is the intersection of the
supporting halfgpaces determined by its (d-1)-faces.
If £ =%k<d, then P contains a flat of deficiency
d-k > 0, contrary to our assumption., Hence f > d,
and when f = d it is easily verified that P is a
convex cone which is affinely equivalent to an orthant

in gd.
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Now suppose f =m >d + 1, let n denote the
number of vertices of P, and let Q and 2z be as
in 4.4 (b). If 2z is not a vertex of Q, then Q
is a d-polytope having m vertices and more than
n (d-1l)-faces. Translating Q so as to contain the
origin in its interior and then forming the polar body,
we obtain a d-polytope which has f (d-1)-faces and
has more vertices than P. Now suppose 2z 1is a vertex

of Q. If n 1 the assertion of 4.5 is obvious, so

i

we suppose n > 2 and denote by S the polytope which
is generated by the vertices of § other than 2z. With
n>2 it is easy to see that S 1is a d-polytope which
has more than n (d-l1)-faces, and then we proceed as we
did earlier with Q. |l

The next result is a partial solution of Dantzig's

problem,
n

4.6 THEOREM Suppose the set P i R

is the

intersection of the positive orthant Qn with a flat

of deficiency m in Bn, where n - 2 Yo+l < m <n

Cg restriction that is unnecessary if the JSG conjecture

is correct). Then the number of extreme points of the

m+n
i 2n .
set P is at most —= when n - m is even and
== == = n+n - — e
m+n-1
2
at most 2( ) when n - m is odd. The upper bounds
m

are attained if and only if P is

w0

an (n-m)-polytope such
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that each vertex of P is on exactly n-m edges and such

that for all k < ((n-m)/2), each k (n-m-1)-faces of P
intersect in an (n-m-k)-face of P,

Proof. Let V(f,d) denote, as in §3, the maximum num-
ber of vertices achieved by any d-polytope which has f
(d-1)-faces; by 4.5, this is greater than the maximum num-
ber of vertices achieved by any unbounded d-polyhedron
which has f (d-1)-faces. Let k .= dim P and
J «=n-m-k > 0. If Jj =0 it follows from 4.2 that
fO(P) < V(n,k), where equality implies boundedness of P.
If J >0 it follows from 4.3 that fo(P) £ V(n-j-1,k) < V(n,k).
We conclude that to(P) < V(n,n-n), where equality cannot
obtain unless P 4is an (n-m)-polytope which has n faces

of dimension n-m-1. Now if n-2vyn+l < m < n, then

n-n 2
n > ('E‘) -1, so from 3.2 it follows that V(n,n-m) is

equal to the upper bounds listed in 4.6. And 4.2 implies
that V(n,n-m) can really be attained as the number of
vertices of some set P of the sort described in 4,6, To
characterize those sets P for which the upper bound is
actually attained, one applies certain results from §§1~2,
the reasoning being similar to that of 3.1."

If a flat in Bn is determined by a system of m
linear equations, then without checking the redundancy of
the system we know only that the flat is of deficiency
< m. Thus the following remark is also of interest in
connection with Dantzig's problem. It can be proved by the

reasoning of 3.4,
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4.7 PROPOSITION Suppose the JSG conjecture is correct.

Let m and n Dbe integers with O Sm<n>2 and let

v be the maximum number of vertices which is realized by

the intersection of @ with & flat of deficiency < m in R°,
Let s .= {(50 + 6 -V(502-4)/10) and ¢ .« {(5n + 12 -¥(50%4) 1) .

Then at least one of the following statements is true:

(a) 2s > n-m and v = E:E (n-s)

(v) 2t-1 > n-m and v = 2 (n-t

m+n

(¢) 28 < n-m, n-m 4is even, and v « ETE

m+n-L
(d) 2t-1 < n-m, n-m is odd, and v = 2 ( 2 ) .
m
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FOOTNOTE

1) I have not actually seen the thesis of Fieldhouse,

but have read a review of it [6].




